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A reduced approach to modeling the electromagnetic Weibel instability and relativistic electron
beam transport in collisionless background plasma is developed. Beam electrons are modeled by
macroparticles and the background plasma is represented by electron fluid. Conservation of
generalized vorticity and quasineutrality of the plasma-beam system are used to simplify the
governing equations. The method is suitable for modeling the nonlinear stages of collisionless
beam-plasma interaction. A computationally efficient code based on this reduced description is
developed and benchmarked against a standard particle-in-cell code. The full-scale two-dimensional
numerical simulation of the Weibel instability saturation of a low-current electron beam is
presented. Using the present approach, linear growth rates of the Weibel instability are derived for
the cold and finite-temperature beams. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2710812�

I. INTRODUCTION

High current electron and ion beams are transported
through plasma in a variety of physical situations, ranging
from astrophysical scenarios1–4 to inertial confinement fusion
�IFC� and accelerator applications.5–9 Recently, the transport
of relativistic electron beams through much denser back-
ground plasma has attracted considerable interest due to its
relevance to the fast ignition �FI� scheme.8 In the FI scheme,
the MeV relativistic electron beam produced by a high-
intensity laser is transported through the much denser coro-
nal plasma and deposited into the hot spot of the core pellet.5

Typically, the energy is deposited by the electron beam, al-
though utilizing a proton beam has also been suggested.7 It is
well known that the Weibel instability plays a particularly
important role in the high-current beam-plasma interaction,
because it leads to beam pinching and filamentation, beam
and plasma heating, and generation of a strong magnetic
field.10–13 Although the basics of electromagnetic beam-
plasma instabilities were comprehensively developed long
ago,13,14 the role of the Weibel instability in beam transport
and stopping during FI is still a topic of active research.8,15–18

In this paper, we present a reduced description of the
Weibel instability for relativistic beams in much denser col-
lisionless background plasmas. This regime is relevant to the
astrophysical and FI �to a lesser degree� scenarios for which
the beam energy is likely to be very high �corresponding to
the relativistic gamma factor ��, and the beam density nb is
much smaller than the plasma density np. The combination of
small nb /np and large � makes the growth rate of the Weibel
instability, being proportional to the beam-plasma frequency

�b=�4�e2nb /m and inversely proportional to ��, much

smaller than the electron plasma frequency �p=�4�e2np /m
of the background plasma. Therefore, conventional particle-
in-cell �PIC� codes that must resolve the electron plasma
frequency are not best suited for modeling the long time
behavior of the Weibel instability and its nonlinear stage. A
review and a comparison of the standard PIC and various
high-performance hybrid approaches, successfully imple-
mented for various physical problems �but not similar to the
presented approach�, are given in Refs. 17 and 19–21. Con-
sidering that most of the beam energy depletion takes place
during the nonlinear stage, development of an alternative
code capable of simulating thousands of plasma periods over
a reasonable period of time is desirable. To this end, we have
developed and numerically implemented a two-dimensional
�2D� model that does not require resolving the fast time
scale. That is because our model kinetically evolves only the
fast electron beam and not the background plasma treated as
a fluid. High electron beam energy enables us to treat back-
ground and beam electrons as two separate species. The con-
servation of the generalized vorticity is used to relate the
fluid plasma velocity to the self-generated magnetic field and
the beam current while properly describing return current
neutralization on a �=c /�p spatial scale. The background
plasma is assumed collisionless in the present paper. Al-
though in some cases collisions could be important for dense
plasmas, one can still envision situations in which the role of
collisions is not dominant. Indeed, for �coll���, where �coll

is the collision rate and �� is the Weibel instability growth
rate, the instability can be considered as collisionless with a
good accuracy. For example, estimates from Ref. 22 for FI-
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related plasmas yield �coll /�p�10−7−10−3 and �coll /�p

��� /�p��nb /np /���10−1−10−2 for nb /np�10−1−10−3

and ��2−6. The entire beam-plasma system is treated as
charge-neutral, which is well justified for the plasma which
is much denser than the beam ��b��p�, as shown in Sec. II.
Thus, the background plasma density is directly determined
by the beam electron density. Although the main concern of
this paper is the evolution of electron beams in background
plasmas, the developed approach can also be easily modified
to the case of propagation of ion beams in background
plasmas.

II. PROBLEM FORMULATION AND DERIVATION
OF FIELD AND PARTICLE EQUATIONS

Assumptions

We assume immobile ions forming a charge-neutralizing
background. This assumption is valid when the ion response
time is longer than the duration of the processes under con-
sideration. The impact of finite ion mass on the development
of the Weibel instability was reported, for example, in Refs.
26 and 27, where it was shown that the finite ion mass does
not considerably change the instability behavior. The beam
nb and background plasma np densities are related to the ion
density ni by the quasineutrality assumption

np + nb = ni. �1�

The assumption of quasineutrality is reasonable as long as
nb�np, because in this case the evolution of the electromag-
netic Weibel instability proceeds slowly on the �p

−1 time
scale.14 The detailed analysis of the applicability of the
quasineutrality assumption is given below.

Further in this paper, we concentrate only on the trans-
verse spatial dynamics of the beam-plasma interaction. The
effects of transverse-longitudinal plasma wave coupling are
considered elsewhere14,24,25 �note, the longitudinal oscilla-
tions can be effectively damped by longitudinal beam tem-
perature and/or by the steep plasma density gradient�. Ac-
cordingly, we assume that the axial length of the electron
beam is much larger than the inhomogeneity scale in the
direction of propagation �z direction� and, therefore, we as-
sume that all quantities of interest are z-independent. Then
the magnetic field can be expressed as

B� = Bze�z − e�z � ��� , �2�

where ��x ,y� is the longitudinal vector potential or poloidal
field flux and Bz is the out-of-plane �toroidal� magnetic field.

Assuming that the electron plasma behaves as a cold
collisionless fluid and satisfies the equation of motion

�v�p

�t
+ �v�p · �� �v�p = −

e

m
�E� +

v�p � B�

c
� , �3�

taking the curl of it and using Faraday’s law �� �E�

=−�1/c��tB� , one can obtain the differential form of a conser-

vation law23 for generalized vorticity �� 	�� �vp
� −eB� /mc in

the form

���

�t
= �� � �v�p � �� � . �4�

Assuming an initially quiescent plasma, one can obtain ��

=0 for all times, and therefore

�� � v�p = eB� /mc . �5�

Equation �5� relates the axial plasma fluid velocity vpz to the
poloidal flux � and the transverse plasma velocity v�p� to the
axial magnetic field Bz according to

vpz =
e

mc
� , �6�

and

�� � � v�p� =
e

mc
Bze�z. �7�

III. DERIVATION OF FIELD EQUATIONS

Conservation of generalized vorticity significantly sim-
plifies modeling electromagnetic beam-plasma instabilities.
In conjunction with the quasineutrality assumption, it en-
ables us to eliminate plasma electron equations of motion
altogether. The only equations that need to be solved are
equations for �, Bz, and equations of motion for the electron
beam particles:

�i� Knowing the beam current J�b, fluid electron velocity
v�p from Eqs. �6� and �7�, and plasma density np from
quasineutrality, we can calculate the plasma electron

current J�p=−enpv�p and the total electron current en-
tering Ampere’s law,

�� � B� =
4�

c
�J�p + J�b� . �8�

Note that, consistent with the quasineutrality assump-
tion, the displacement current is neglected in Eq. �8�.
Projecting Eq. �8� on the z axis and using Eq. �6�
yields the equation for the poloidal flux,

�2� =
�p

2

c2 � −
4�

c
Jbz. �9�

�ii� The equation for Bz is obtained by taking the curl of
the transverse part of Ampere’s law in the form −�e�z

��� Bz� /np=−4�ev�p� /c+4�J�b� / �cnp�, yielding

��2 − �� ln np · �� −
�p

2

c2 �Bz =
4�np

c
�� · � e�z � J�b

np
� .

�10�

�iii� The electric field E� , to be used in the equation of
motion for the beam particles, can be calculated using
the plasma electron fluid equation of motion. The
combination of the z component of Eq. �3� with Eq.
�6� yields the axial electric field
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Ez = −
1

c

��

�t
, �11�

which also can be obtained from the transverse

component of Faraday’s law, c�� �E� =−�tB� . The
transverse part of Eq. �3� can be cast as the equation

for E� �,

E� � +
vpz

c
e�z � B� � = −

m

e

 �v�p�

�t
+ �� �v�p�

2

2
�� , �12�

where the v�p��e�zBz term is combined with the sec-
ond term on the left-hand side �lhs� of Eq. �3� produc-
ing the second term on the right-hand side �rhs� of Eq.
�12�. What immediately distinguishes the equations

for Ez and E� � is that the latter is approximately con-

sistent with the inertialess frozen-in law, E� +v�p

�B� /c=0, while the former is strikingly different, be-
cause electron inertia is retained in the longitudinal
equation of motion for plasma electrons. This distinc-
tion between the longitudinal and transverse compo-
nents of the electric field in initially unmagnetized
plasma was pointed out in Ref. 23. Using Eq. �5�, Eq.
�12� can be recast as

E� � = −
e

2mc2�� �2 −
m

e

 �v�p�

�t
+ �� �v�p�

2

2
�� . �13�

The first term in Eq. �13� is due to the ponderomotive
pressure of the transverse magnetic field on the
plasma electrons while the second one is due to the
electron inertia.

A. Equations of motion of the beam electrons

Once the electric and magnetic fields are determined, the
equation of motion for the beam electrons is

d��v� j�
dt

= −
e

m
�E� +

v� j � B�

c
� , �14�

where the subscript j denotes the “jth” beam electron, and
can be recast as

d�� jv� j��
dt

= −
ev jz

mc
�� � +

e2

2m2c2�� �2 +
F�
�

m
, �15�

where

F�
� 	

eBz

c
e�z � v� j + m

�v�p�

�t
+ m�� �v�p�

2

2
� �16�

and

d��v� jz�
dt

=
e

mc
� ��

�t
+ v� j� · �� �� . �17�

Equation �16� denotes the force originating from the
axial magnetic field and plasma electron inertia in the trans-
verse direction. Usually this force is much smaller than the
first term on the rhs of Eq. �15�, as shown below. Equation

�17� expresses the conservation of the z component of the
canonical momentum of the beam electrons along their
trajectories,

� jv jz = � j0v jz0 +
e

mc
�� − � j0� , �18�

and the initial conditions are v jz�t=0�=v jz0 and �(x� j�t=0�)
=� j0.

Finally, the transverse electron fluid velocity v�p� is
found from Ampere’s law,

v�p� =
J�b�

enp
+

c

4�enp
e�z � �� Bz. �19�

The field equations, given by Eqs. �9� and �10�, and
equations of motion, given by Eqs. �15� and �18�, form a
closed system enabling the calculation of the complete dy-
namics of the beam-plasma interaction. Namely, fields are
computed at each time step �after the beam particles are ad-
vanced�, their density and currents are computed, and the
background plasma density is calculated from Eq. �1�.

The main advantages of the described approach over the
existing PIC21 and hybrid Darwin-like models17 are as fol-
lows: �a� due to quasineutrality, we do not have to resolve the
time scale �t=1/�p corresponding to the fast plasma oscil-
lations; �b� the only spatial scale that needs to be resolved is
the collisionless skin depth �; �c� the only quantities that are
evolved in time are the beam position and velocities, not the
background plasma parameters; and �d� there is no need to
solve the advection-type fluid equation for plasma electrons,
like in the hybrid Darwin approach. These features of the
presented approach enable fast modeling of the long-time
nonlinear behavior of the relativistic beams even on standard
desktops, which can be of great help for various beam-
plasma applications.

B. Justification of quasineutrality assumptions
and force ordering

The applicability of the quasineutrality assumption can
be analyzed as follows. Rewriting Eq. �13� for electric field

with the help of Eq. �6� in the form E� �=−��v�p� /�t

+�� v�p
2 /2�m /e, substituting it into Poisson’s law,

1

4�eni
�� � · E� � = 1 −

np + nb

ni
, �20�

and approximating the time and space derivatives as � /�t
→�� and � /�x�→1/� �where �� is the growth rate of the
instability and � is the characteristic transverse spatial scale�
yields

1 −
np + nb

ni
� ���vp�

��i
2 � + � vp

2

�2�i
2� � ��b

�p

vp�

c
� + �vp

2

c2� ,

�21�

where �i
2=4�e2ni /m, and the estimates for the growth rate

����b �see the next section� and the smallest possible spa-
tial scale ��c /�p �the scale of a homogenous solution of
Eq. �9�� were used. Further, Eqs. �6� and �9� give the estimate
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for the ratio of the axial plasma and beam velocities
vpz /vbz��b

2 /�p
2, and Eqs. �7� and �10� yield the ratio of the

transverse plasma and beam velocities vp� /vb���b
2 /�p

2.
Since for a relativistic beam vbz�c, we find that vp��vpz

and vp /c�1 as long as 	1	vb� /vbz�1 and 	2

	�b /�p�1. Therefore, if 	1 ,	2�1, then the quasineutral-
ity assumption is well-justified,

1 − �nb + np�/ni � 	1	2
3 + 	2

4. �22�

Also, rewriting Eq. �15� �using Eqs. �6� and �7�� in the
form

d�� jv� j��
dt

= − v jz�� vpz + ��� � v�p�� � v� j +
�v�e�

�t
+

1

2
�� v�e

2,

�23�

and using a similar reasoning, it can be easily shown that for
	1 ,	2�1, the first term on the rhs of Eq. �23�, corresponding
to the Lorentz force exerted by the transverse magnetic field
on the beam electrons, is much larger than all other terms,
corresponding to the Lorentz force exerted by the axial mag-
netic field and the force of the inductive electric field, or,

F�
�  �

	1 + 	1	2 + 	2
2

� ev jz

mc
�� �� . �24�

Therefore, the propagation of a relativistic electron beam
into dense background plasma can also be approximately
modeled using only the equation for the axial vector poten-
tial, Eq. �9�, and the equations of transverse motion of the

beam electrons in this potential, Eqs. �15�, with F�
� =0. The

axial beam electron velocity v jz is related to the axial vector
potential through Eq. �18� and is approximately constant for
	2�1, because �v jz /v jz� �vpz /v jz�vpz /v jz�	2

2, where �

stands for the change along a beam particle trajectory.
Next, we demonstrate how the linear growth rate of the

Weibel instability is recovered from this reduced model.

IV. LINEAR ANALYSIS OF THE WEIBEL INSTABILITY
FROM THE REDUCED MODEL

To describe the linear stage of the Weibel instability for
a cold beam-plasma system, it is assumed that an electron
beam of density nb propagates with velocity vbz through the
plasma with unperturbed density np0=ni�nb. Displacement
of the plasma by the beam lowers the plasma density to np

=np0−nb. Also, we assume that the transverse width of the
beam Rb is much larger than the collisionless skin depth �
=1/kp. Equation �9� then yields the equilibrium poloidal flux
function �0=−�mcvbz /e�nb / �np0−nb�. Recalling that the lon-
gitudinal plasma fluid velocity is proportional to the poloidal
flux, the return velocity of the electron fluid can be written as
vpz0=−vbznb / �np0−nb�. Consequently, in the limit of a very
thick beam �Rb→ 
 �, the corresponding electron plasma re-
turn current Jr=−enpvpz0 exactly cancels the beam current
Jb=−enbvbz.

Assuming a small magnetic field perturbation ��
�eik��·x� superimposed on �0, the linearized Eq. �9� becomes

− �k�
2 + kp

2��� =
4�e2�np

mc2 �0 +
4�e

c
��vbznb + �nbvbz� ,

�25�

where �np is the electron density perturbation, and �nb ,�vbz

are the beam density and velocity perturbations, respectively.
For the dense background plasma �nb�np�, the following
relations hold: �vbznb�kp

2�� and �npe�0 /mc��nbvbz,
which follow from direct substitution of the expressions for
the potential and its equilibrium value and �np=−�nb. Con-
sequently, Eq. �25� can be rewritten as

− �k�
2 + kp

2��� � +
4�e

c
vbz�nb. �26�

The corresponding beam density perturbation, �nb, can be
expressed through �� from the linearized beam equation of
motion, Eq. �15�, in the fluid form,

��v�b�

�t
= −

evbz

�mc
�� ��� , �27�

and from the linearized continuity equation

��nb

�t
= − nb��

� · �v�b�. �28�

Assuming that �nb�exp�−i�t�, taking the time deriva-
tive of Eq. �28�, and substituting Eq. �27� yields

�nb

nb
=

k�
2 cvbz

�2

e��

�mc2 . �29�

Substituting Eq. �29� into Eq. �26� produces the familiar10

dispersion relation for the Weibel instability of a cold elec-
tron beam propagating through cold plasma,

�2 = −
�b

2

�

k�
2

k�
2 + kp

2

vbz
2

c2 . �30�

The above equation validates our reduced approach and
shows that the Weibel instability is exponentially growing
with the growth rate �w��bvbz /c��p.

Note that the plasma temperature can be easily included
in the above formalism as long as the plasma fluid thermal

force term −��� p� /np can be recast as a gradient, because this
form does not violate the conservation of the generalized
vorticity. The beam temperature is directly accounted for in
the framework of a kinetic calculation. Arbitrary transverse
and longitudinal temperatures of the beam can be modeled
with the present approach. An example of the kinetic calcu-
lation of the linear stage of the Weibel instability for the
initial waterbag-like distribution function for a warm beam is
given in the Appendix.

V. NUMERICAL IMPLEMENTATION OF THE REDUCED
MODEL AND SIMULATION RESULTS

The numerical algorithm for solving the system of Eqs.
�9�, �10�, and �15�, or its simplified version given by Eqs. �9�
and �15� with F�

� =0, consists of the following steps:
Initialization: Given the initial beam electron positions

and momenta, the beam electron density and current are cal-
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culated on the 2D �x ,y� grid in the computational domain,
according to the chosen weighting function.21 The coeffi-
cients in the equations for the fields � and Bz are calculated
on the grid and the equations are solved on the grid. Both
equations are second-order nonseparable �with coefficients
depending on x ,y� elliptic equations and are efficiently
solved by the multigrid technique.28

Simulation loop:

�i� Once the beam electron positions, momenta, and
fields are known on the grid, the transverse momenta
and positions of the beam particles are evolved over
one time step according to the equation of motions
�15� using the fields weighted from the grid to the
particles’ positions.21 The second-order Runge-Kutta
method for time integration was used.

�ii� The beam density and current are recalculated using
the new values for beam electron positions and trans-
verse momenta as well as the nonevolved values of
the axial beam momenta, and the equations for Bz and
� are solved.

�iii� Knowing the “predicted” values of � from �ii�, Eq.
�18� is solved for the “predicted” values of the axial
beam electron momenta. The beam current is recalcu-
lated and the equations for the fields are solved for the
“corrected” values. The “corrected” values of the
� jvzj are also calculated. Step �iii� can be reiterated
for higher accuracy �but usually a couple of iterations
are sufficient�.

A. Numerical simulation of the temporal dynamics
of a low-current relativistic beam
in background plasma

To demonstrate the effectiveness of our approach for
modeling the long-time behavior of the Weibel instability, we
have simulated the time evolution of a low-current �I IA,
where IA=mc3 /e��vbz /c is the Alfvén current� electron
beam propagating in a dense background plasma. The snap-
shots of the electron beam density at different times are pre-
sented in Fig. 1. Initially ��p0t=0�, the flat-top cylindrical
electron beam with a radius 10c /�p0 and an initial beam-
plasma density ratio nb0 /np0=0.001 are assumed. The initial
axial �z direction� beam electron velocity is 0.885c and the
initial transverse beam velocities are equally distributed in
the range �−0.007c ,0.007c�, corresponding to water-bag dis-
tribution in the transverse directions. The computational do-
main was chosen as 32c /�p0�32c /�p0 in the x ,y directions,
divided into 256�256 cells, and the number of the beam
superparticles was 2.16�106. The time behavior of the nor-
malized energies of plasma �kinetic�, magnetic and electric
field energies, as well as the beam transverse energy are plot-
ted in Fig. 2, where the straight line is the estimate for the
instability growth rate �doubled� from Eq. �30�, showing
good agreement with the results of the full-scale numerical
simulation.

Because the current of the finite-size beam cannot be
exactly canceled by the plasma return current, as is seen
from Eq. �9�, the uncompensated beam current begins to
drive the electromagnetic Weibel instability. This instability

initially manifests itself in pinching of the beam due to the
radially inward Lorentz force �which must be larger than the
thermal force; see the Appendix� with consequent ring for-
mation ��p0t210�; see also Refs. 17 and 18. The transfor-
mation of the flat-top beam into the ring is due to the fact
that initially the beam current is uncompensated by the return
current mainly at the beam edge. Later on, as the first formed
ring is pushed inwards, the second ring is created at the beam
edge and the beam starts to break up into numerous filaments
��p0t=310�. Subsequently, the filaments merge and finally
��p0t=460� coalesce into a single pulsating filament, with
nb /nb0�100 and the instability saturates.

The instability saturation occurs when the beam elec-
trons acquire the radial velocity large enough to traverse the
filament of characteristic size Rb by the time corresponding
to the characteristic time of the instability growth 1/��.
When this condition is met, the beam electrons start to
sample the Lorentz force in both the inward and outward
radial directions as they oscillate. This simple estimate re-
sults in

Rb �
vbz

��

�
�c

��

, �31�

where �c=eB / ��mc� is the cyclotron frequency of the trans-
verse magnetic field. This condition is equivalent to the ear-
lier derived condition,11,13 which equated the rate of the in-
stability growth to the frequency of oscillation of the
magnetically trapped beam electrons �in our case electrons
bounce in the poloidal flux of the filament�. From this esti-
mate �assuming Rb�1/kp�, the fraction of the energy trans-
ferred to the magnetic field can be evaluated as follows:

Emagn

Ebeam
�

B2/8�

�� − 1�mc2nb
�

1

8�� − 1�
nb

ne

vbz
2

c2 �
�

2�� − 1�
I

IA
.

�32�

For our simulations, the normalized beam density of the
compressed single filament at saturation is nb /ne�0.1, as is
seen from Fig 1, and the above formula yields Emagn/Ebeam

�0.001, which is roughly in agreement with the results of
our numerical simulations, shown in Fig. 2. After saturation,
because of the beam overfocusing, the peak energy conver-
sion overshoots the saturation value given by Eq. �32�. Sub-
sequent nonlinear oscillations of the filament radius are re-
flected in the oscillations of the magnetic and plasma
energies shown in Fig. 2.

Note that the present qualitative description of the satu-
ration mechanism is only valid for low-current beams with
total current less than the Alfvén current. The detailed analy-
sis of the saturation of the Weibel instability and long-time
nonlinear beam-plasma behavior is the important topic,
which still needs further elaboration, and will be presented in
a forthcoming publication.

B. Benchmarking with the LSP PIC code

For benchmarking purposes, the LSP PIC code29 is used
in order to provide comparison to the numerical simulation
described above. The 2D �r ,�� PIC simulation domain ex-
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tends from r=0 to r=32c /�p0 and from �=0 to �=2� rad
with grid spacings �r=0.15c /�pe0 and ��=0.1 rad. Periodic
boundary conditions are enforced in the � direction. The
electromagnetic field equations are solved implicitly in order
to increase the time step of the simulation by a factor of 10
relative to the Courant condition; the time step satisfies
�p0�t=0.14.

All particles in the LSP simulation are pushed by an
explicit particle mover using the well-known “leap-frog”
technique, which splits the electric field push into two halves
between the magnetic field rotation. The background plasma

particles are treated as fluid species, whereas the electron
beam particles are treated kinetically, as in the reduced
model presented in this paper. An energy-conserving particle
push that is not susceptible to the so-called Debye-length
numerical instability is used for all species. Therefore, a grid
spacing that under-resolves the Debye length is allowed
while good energy conservation is maintained. Also, a cloud-
in-cell method that reduces noise due to discrete particle ef-
fects is employed in the PIC interpolation scheme.

As in the numerical simulation presented in Sec. V A, a
flat-top cylindrical beam with radius 10c /�pe0 is injected

FIG. 1. �Color online� The temporal
evolution of the electron beam density
normalized to the ion density. z axis,
normalized beam density; x ,y axes,
spatial grid. Snapshots at different nor-
malized times �pt are shown: �a� t=0,
initial beam density; �b� t=210, 310,
and 370, “ring” formation with subse-
quent filamentation; �c� t=460, maxi-
mal compression corresponding to in-
stability saturation; �d� t=500 and 660,
post-saturational radial oscillation of
the beam. Cold electron beam with
nb /np0=0.001 and vbz /c=0.885 was
assumed.
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into the simulation with an axial directed velocity of �z

=0.885 �without spread� using 90 beam particles per cell.
The initial electron beam density relative to the initial back-
ground plasma density is 10−3 and the initial transverse beam
velocities are equally distributed between �= �−0.007,
+0.007�.

The electron beam density plots simulated by the re-
duced approach presented in this paper are shown in Fig. 3
�total run time 30 min�, and the results from the hybrid PIC
treatment in LSP simulations �total run time 10 h�, using
fluid plasma species with kinetic electron beam particles, are
shown in Fig 4. Both codes were run on similar desktop
computers �Pentium 4�. Good agreement between the two
models is evident. Both simulations show radial compression
and filamentation of the electron beam due to the electro-
magnetic Weibel instability. The fact that the LSP simulated
filaments have more structure is attributable to intrinsic prop-
erties of PIC codes. Some amount of numerical noise inevi-
tably contributes to the seeding of the instability, and this
noise can be quite different for different codes. Nevertheless,

FIG. 2. �Color online� Time development of normalized energies of plasma,
magnetic �transverse and axial� and electric �transverse and axial� fields, and
beam �transverse, � j�� j�−1�mc2�. All energies are normalized on the axial
beam energy � j�� jz−1�mc2. Straight line, the average initial growth rate
from Eq. �30�. Parameters as in Fig. 1. Time is normalized to �p0

−1.

FIG. 3. �Color online� The electron beam density normalized to the ion density simulated by the approach of this paper. Time snapshots: �a� �p0t=220, �b�
�p0t=320, �c� �p0t=380, and �d� �p0t=490.
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we consider the agreement between the LSP and our simula-
tions to be very good: all stages of the instability are repro-
duced by both codes very similarly.

VI. CONCLUSIONS

We have developed a reduced description of the Weibel
instability for relativistic beams in much denser collisionless
plasmas. When the beam density is much smaller than the
plasma density and the beam energy is high, the growth rate
of the Weibel instability is small, placing stringent computa-
tional resource requirements on the conventional PIC model.
We have developed and numerically implemented a 2D re-
duced model that does not require resolution of the plasma
period and evolves only the fields and beam electrons. In our
approach, the plasma is treated as a fluid and the beam as
kinetic macroparticles. The quasineutrality assumption used
together with the conservation of generalized vorticity en-

ables us to eliminate plasma electron fluid quantities alto-
gether. Using this model, we were able to model long-time
beam-plasma dynamics, paying special attention to the de-
tails of the nonlinear stage of the Weibel instability, such as
filamentation, instability saturation, and post-saturation field
and energy oscillations. The validity and computational effi-
ciency of our code was verified by comparisons with the
first-principles LSP PIC code. Further work will incorporate
finite plasma temperature and resistivity effects.

APPENDIX: KINETIC CALCULATION OF THE LINEAR
GROWTH RATE OF THE WEIBEL INSTABILITY

Here we apply the reduced description of the Weibel
instability in dense plasma developed in Sec. III to derive the
kinetic growth rate for a specific �water-bag� distribution
function of a warm electron beam.

The linearized relativistic Vlasov equations reads

FIG. 4. �Color online� The electron beam density normalized to the ion density, simulated by the LSP PIC code. Parameters: as in Figs. 1–3.
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� f1

�t
+

p�

m�

� f1

�x�
−

e

cm�
p� � B�

� f0

�p�
= 0, �A1�

where the electric field given by Eqs. �11� and �12� is ne-
glected for �  �1. The unperturbed distribution function for
the warm relativistic electron beam is assumed in the follow-
ing form:

f0�px,py,pz� =
nb

�P�
2 ��P� − �px

2 + py
2���pz − Pz� , �A2�

where ��x�=0 or 1, respectively, for x0 or x�0.
Representing the perturbed part of the distribution func-

tion as f1=�f1eı�kxx+kyy−�t� and the same for all field quanti-
ties, the solution of Eq. �A1� for pz�px , py is given by

�f1 = −
e

c
pz��

kx
�

�px
+ ky

�

�py

m�� − kxpx + kypy
f0, �A3�

where Bx=��� /�y and By =−��� /�x were used.
Using Eqs. �A2� and �A3�, the axial beam current can be

expressed as

�jbz =
e2nbPz

2

cm�P�
2 ��� dpxdpy

�

k�
� · �p

���P� − �px
2 + py

2�

m�� − k�
� · p�

,

�A4�

where the integration over pz has been performed and �

=�px
2+ py

2+ Pz
2.

To integrate the above equation, it is convenient to ex-
press the scalar products in the numerator and denominator
in polar coordinates �px= p cos � , px= p sin � and kx

=k cos � ,ky =k sin �� as k�
� ·�p

�=k cos �� /�r

+k / p sin �� /�� and k�
� · p�=kp cos � with �=�−�. Using the

relation �0

dpf�p�d��c− p� /dp=−f�c�, the beam axial cur-

rent can be rewritten as

�jbz = −
e2nbPz

2

cm2�P�

k

��2���
0

2�

d�
cos �

1 −
kP�

�m�
cos �

, �A5�

where �	��P� , Pz�. For complex �, the integrand is nons-
ingular and the simple integration yields

�jbz = −
e2nbPz

2

cmP�
2

2

�
��� 1

�1 −
k2P�

2

�2m2�2

− 1� , �A6�

where u= Pz / �m�� and V�= P� / �m��.
Finally, substitution of the beam axial current into the

linearized equation for the poloidal field flux

�2�� −
�e

2

c2 �� � −
4�

c
�jbz �A7�

leads to the dispersion equation yielding the linear kinetic
growth rate of the instability ��=−Im���,

k�
2 +

�e
2

c2 = − 2
�b

2

�

u2

c2V�
2 � 1

�1 −
k2

�2V�
2

− 1� . �A8�

The solution of this equation is

�2 = −
1

�

k2

k2 +
�e

2

c2


��k2 +
�e

2

c2 �V�
2 − 2

u2

c2 �b
2�2


��k2 +
�e

2

c2 �V�
2 − 4

u2

c2 �b
2� . �A9�

Expanding the above equation to zeroth order in V�
2

yields the conventional dispersion relation for the Weibel
instability of a cold beam given by Eq. �30�,

�2 = −
�b

2

�

u2

c2

k2

k2 + �e
2/c2 . �A10�

The first order in V�
2 expansion yields the lowest-order tem-

perature correction �see also Refs. 14 and 17�,

�2 = −
�b

2

�

u2

c2

k2

k2 + �e
2/c2 +

3

4
V�

2 k2. �A11�

Analysis of the dispersion equation �A9� yields the param-
eters range for which the Weibel instability exponentially
grows �see Fig. 5�. As is seen from Eq. �A9�, the frequency is
complex if the denominator is positive, yielding the upper
bound for the growing wave vectors for warm plasmas,

kmax

kp
=�4

�

u2

V�
2

�b
2

�e
2 − 1. �A12�

Now, it is seen that, although all modes corresponding to
all spatial scales participate in the beam pinching for a cold
beam, the only modes that grow for the warm beam have a
characteristic size larger than 1/kmax. Also, as kmax must be
positive, Eq. �A10� produces the condition on the upper pos-
sible beam temperature supporting the unstable modes,

FIG. 5. �Color online� The dispersion curves for the cold beam �solid line�
and warm beam �dashed line, Eq. �A11�; dash-dotted line, Eq. �A9��. Pa-
rameters are as in Fig. 1.
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V�

u


2
��
�nb

ne
. �A13�

If the above equation is not satisfied, then the thermal
pressure force of the beam electrons is larger than the Lor-
entz force exerted by the transverse magnetic field on the
beam. Therefore, instead of pinching, the beam spreads
transversely.
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